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Salmon life histories are finely tuned to local environmental conditions, which are 

intimately linked to climate.  We summarize the likely impacts of climate change on the 
physical environment of salmon in the Pacific Northwest and discuss potential 
evolutionary consequences of these changes, with particular reference to Columbia River 
basin spring/summer Chinook (Oncorhynchus tshawytscha) and sockeye (O. nerka) 
salmon. We discuss possible evolutionary responses in migration and spawning timing, 
egg and juvenile growth and development rates, thermal tolerance, and disease resistance.  
We know little about ocean migration pathways so cannot confidently suggest potential 
changes in this life stage.  Climate change might produce conflicting selection pressures 
in different life stages, which will interact with plastic (i.e., non-genetic) changes in 
various ways.  To clarify these interactions, we present a conceptual model of how 
changing environmental conditions shift phenotypic optima and, through plastic 
responses, phenotype distributions, affecting the force of selection. Our predictions are 
tentative because we lack data on the strength of selection, heritability, and ecological 
and genetic linkages among many of the traits discussed here.  Despite the challenges 
involved in experimental manipulation of species with complex life histories, such 
research is essential for full appreciation of the biological effects of climate change.  
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Climate change is transforming the fitness landscapes of millions of species at a 
rapid rate, but we have little understanding of the evolutionary consequences.  
Evolutionary responses to climate change are important because non-genetic responses, 
such as shifts of range edges and plastic phenotypic change, might not be sufficient for 
the persistence of many populations (Sala et al. 2000; Thomas et al. 2004), and because 
strong selection can increase the risk of extinction in small populations (Bürger and 
Lynch 1995).  Evolutionary responses seem likely because of the prevalence of spatial 
variation in physiological and behavioral traits that reflect past adaptation to local climate 
(Garland and Adolph 1991; Davis et al. 2005; Reusch and Wood 2007), and growing 
evidence of contemporary evolution in response to a variety of environmental 
disturbances (Stockwell et al. 2003).  However, despite a few notable exceptions, genetic 
responses to climate change have proven difficult to demonstrate (see reviews in 
Bradshaw and Holzapfel 2006; Reusch and Wood 2007; Gienapp et al. 2008). Most 
phenotypic change recently observed might be largely due to plastic (i.e., non-genetic) 
change (Reale et al. 2003a; Berteaux et al. 2004; Gienapp et al. 2008).  Persistence 
through climate change will continue to depend on plastic responses, because 
evolutionary responses are often limited and can impose demographic costs (Lynch and 
Lande 1993; Bürger and Lynch 1995).  Furthermore, the distinction between genetic and 
plastic responses is simplistic because populations show genetic differences in their 
plasticity (i.e., different “norms of reaction”), and these can evolve (Nussey et al. 2005).  
Plastic and genetic mechanisms interact in complicated ways, and it is important to 
disentangle them in order to predict the effects of climate change on natural populations. 

Most empirical research to date has considered evolutionary responses to 
environmental change in single traits, such as a shift in photoperiodic cues for diapause in 
mosquitoes (Bradshaw and Holzapfel 2006), dispersal ability in crickets (Thomas et al. 
2001) and butterflies (Hill et al. 1999), or chromosome inversion rates in Drosophila 
(Balanya et al. 2006).  This single-trait approach yields insights, but selection is often 
more complicated.  For example, in species with complex life histories, selection due to 
climate change can act simultaneously on multiple traits in ways that differ through the 
life cycle (Prout 1971; Lande and Arnold 1983; Arnold and Wade 1984; Lynch 1999).  
Changes in one life stage can have extensive repercussions for later life stages, 
particularly in migratory animals, where multiple life-stage transitions are finely tuned to 
conditions in radically different environments.  Genetic covariances between traits under 
different selection pressures will shape the response to selection (Etterson and Shaw 
2001).  Moreover, community interactions are likely to be disturbed, simply because 
phenological responses of interacting species might not be parallel (Harrington et al. 
1999; Visser and Both 2005).  

We explore how these various mechanisms might interact to shape the selective 
environment in the case of Pacific salmon (Oncorhynchus spp.).  Salmon species have 
plastic life histories, but adaptation of reaction norms to local environmental conditions at 
a very fine spatial scale (e.g., Tallman 1986; Quinn et al. 2000; Beer and Anderson 2001; 
Keefer et al. 2004) suggests that climate change will profoundly affect salmon life 
histories, and the interplay between genetic and plastic responses is likely to be 
important.  The anadromous salmon life cycle depends crucially on appropriate timing of 
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transitions between habitats, so the potential for a growing mismatch between the needs 
of different stages in relation to these transitions is a major concern.  Many salmon 
populations in the Pacific Northwest are already threatened with extinction, so the effects 
of climate on absolute fitness (i.e., a population’s capacity for replacing itself) warrant 
conservation concern, and must be considered in the context of a web of natural and 
anthropogenic agents of selection (Waples et al. 2008).  
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A consequence of extensive local adaptation and life history diversity in salmon is 
that climate change will differ in its effects on specific populations; review of all these 
effects is beyond the scope of this paper.  Rather, we emphasize the interacting and 
cumulative effects of climate change across the life cycle.  To accomplish this, we focus 
on a particular set of Chinook (O. tshawytscha) and sockeye (O. nerka) populations 
having certain life history commonalities (namely, spring adult migration and yearling 
juvenile outmigration) within the Columbia River Basin.  The Columbia River marks the 
southern limit of the geographic range of sockeye, but it is well within the range of 
Chinook salmon (Groot and Margolis 1991). Chinook salmon persist south of the 
Columbia River in Oregon and California and were abundant historically, but these 
populations are genetically and behaviorally very distinct from the populations 
considered here.  Snake River spring/summer Chinook salmon that are our primary focus 
are the southernmost populations of a northern ecotype of Chinook, defined by a 
combination of juvenile seaward migration, ocean migration pattern, and the season of 
adult return (Taylor 1990; Healey 1991; Waples et al. 2004).  We argue here that these 
characteristics will become increasingly maladapted with climate change.  These 
populations are listed as threatened under the U.S. Endangered Species Act (NMFS 
1992), so any further decline in fitness significantly threatens their persistence (McClure 
et al. 2003; Crozier et al. 2008).   

In the following sections, we first explain the complex nature of Pacific salmon 
life histories and their adaptations to diverse environments across the Pacific Rim.  We 
then consider how these environments, particularly those experienced by our focal 
populations, are expected to change due to climate warming.  We next examine evidence 
for local adaptation to climate, likely changes in selection with climate change, and 
potential evolutionary responses for certain traits during particular life stages.  Finally, 
we discuss the importance of integrating potential plastic and evolutionary responses 
across multiple traits and life-history stages.  

Salmon life-history diversity 
 Pacific salmon have complex life histories that span diverse environments across 
the Pacific Rim (Groot and Margolis 1991; Quinn 2005).  They spawn in fall in fresh 
water and their embryos incubate in the gravel during the winter and emerge in spring.  
Juveniles then spend days to years in habitats ranging from small creeks to large rivers, 
and small ponds to large lakes.  Most juveniles then migrate downriver, through estuaries 
and coastal waters, to the ocean. These “anadromous” individuals spend anywhere from a 
few months to as much as seven years at sea, before migrating back to spawn, and most 
die at their natal sites in fresh water.  This great diversity of environments and behaviors 
suggests that climate change could influence selection on multiple traits in multiple 
phases of the life cycle.  
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 Life-history diversity in salmon reflects a combination of phenotypic plasticity in 
response to variable environmental conditions (Hutchings 2004) and local adaptation 
throughout the life cycle, across the complete suite of life history, morphological, 
physiological, and behavioral traits (Ricker 1972; Groot and Margolis 1991; Taylor 1991; 
Quinn 2005). Phenotypic plasticity facilitates rapid colonization of new habitats and 
immediate responses to environmental change (Quinn et al. 2001; Price et al. 2003; 
Ghalambor et al. 2007).  Local adaptation is facilitated by strong natal homing that limits 
gene flow between populations in different selective environments.  Despite the 
remarkable extent of plasticity and local adaptation, appropriate and sufficient responses 
to climate change are not assured because of the uncertain rate and nature of climate 
change, the genetic properties of traits, the effects of invasive species and other stressors 
(e.g., hatcheries, fishing, hydroelectric dams). 
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Expected climate change  
Projections for 21st century climate around the Pacific Rim and in the Pacific 

Ocean suggest significant surface warming trends, especially at higher latitudes and over 
continents. A range of models and greenhouse gas and aerosol emissions scenarios 
project global average warming from ~+1 to +6°C by the year 2100 (IPCC 2007).  For 
the Pacific Northwest (coastal North America from northern California to southern 
British Columbia, Fig. 1), warming is projected to be near the global average. Most 
climate models project modest increases in winter precipitation for this region (on 
average, ~10%), but projections for summer precipitation form no consistent pattern 
(Salathé 2006).   

These climate-change projections indicate clear hydrologic changes for salmon-
bearing streams in western North America.  Winter will become milder, causing more 
precipitation to fall as rain and less as snow in locations where surface temperatures have 
historically been near freezing.  A warming climate in the second half of the 20th century 
caused a significant advance in timing of snowmelt runoff for many rivers in the region 
(Stewart et al. 2005).  Additional warming is expected to cause further shifts in the onset 
of snowmelt in streams that now carry a substantial snowpack into the spring and summer 
seasons.  A warmer atmosphere has a higher capacity for water vapor, which promotes 
greater hydrologic extremes: more severe drought in summer and more intense 
precipitation and flooding in winter.  Rising surface air temperatures will also cause 
stream and estuary temperatures to rise.  Over the North Pacific Ocean, important 
changes in salmon habitat will depend primarily on 1) rising upper ocean temperatures 
that increase the stratification of the upper ocean, 2) changes in surface wind patterns, 
potentially changing the timing and intensity of the upwelling of nutrient-rich subsurface 
water, and 3) increasing ocean acidification changing plankton community composition 
with effects cascading through marine food-webs. 

This is the template of climate change that is expected to influence the evolution 
of Pacific salmon in the 21st century.  We now explore the evolutionary implications of 
these trends for the phenology of critical periods in the life history of salmon.  For each 
trait, we (1) describe how climate change might alter the selective regime, (2) review the 
trait’s genetic variation and heritability (h2), and (3) assess the likelihood and relative 
speed of potential evolutionary responses. It is important to remember that the following 
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conclusions are merely hypotheses, in part because few studies have formally measured 
selection on salmon in response to environmental change. We do cite those studies but 
more are certainly needed. 

194 
195 
196 
197 

198 

199 

200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 

 

Potential evolutionary pressures and responses  

Heat tolerance  
The most obvious effect of climate change will be higher temperatures in fresh 

water.  Warmer water can accelerate growth and development where temperatures are 
below optimal, or stress fish if they cannot behaviorally avoid temperatures that are 
above optimal. Fitness in warm water is reduced by mortality at lethal temperatures, and 
various impacts at sublethal temperatures, such as increased susceptibility to warm-water 
diseases, inhibition of normal behavior, growth and development, especially 
smoltification, maturation, and egg development, and increased energetic costs (for 
reviews, see McCullough 1999; Materna 2001).  Despite the high elevation at which most 
of the populations considered here spawn and rear, much of the rearing habitat already 
exceeds optimal temperatures for salmonids at times (Donato 2002).  Temperatures 
approach lethal limits in the mainstem Columbia, Snake, and Okanagan Rivers regularly, 
affecting the times fish can migrate to and from the ocean (Hodgson and Quinn 2002; 
Hyatt et al. 2003; Brannon et al. 2004; Naughton et al. 2005).    

Variation in temperature-specific survival rates occurs among populations from 
different thermal regimes, suggesting that thermal tolerance can evolve in the wild.  For 
example, coastal Chinook salmon populations show lower egg and embryo survival and 
lower yolk conversion efficiency at cold temperatures than do interior populations 
(Beacham and Murray 1989), and juvenile Chinook salmon from southern British 
Columbia tolerate longer exposure to high temperatures than those from northern British 
Columbia (Beacham and Withler 1991).  Beacham and Withler (1991) found heritability 
for heat tolerance to be significant in the population from the cooler stream (h2=0.27), but 
not in the population from the warmer stream (h2=0.00), suggesting that selection had 
acted in the latter population to increase heat resistance.  Nonetheless, differences in 
upper lethal temperatures between populations from very different thermal environments 
are subtle and sometimes disappear with appropriate acclimation and testing (e.g., Brett 
1956; Konecki et al. 1995b; Konecki et al. 1995a).  Overall, these and other studies 
suggest a potential for local adaptation of heat tolerance, but the limitation of salmon to 
habitat below ~23˚C (McCullough 1999) points to an ultimate upper limit to heat 
tolerance that evolution cannot surmount. 

Populations near this upper thermal limit seem to persist through behaviors that 
reduce exposure to the highest temperatures, such as the occupation of cold-water refugia 
(Berman and Quinn 1991; Torgersen et al. 1999; Goniea et al. 2006).  From the 
perspective of climate-induced warming, it would be valuable to know whether 
populations differ genetically in their tendency to adopt these behaviors.  If all 
populations harbor the potential for behavioral avoidance of warm water, then these 
responses might ameliorate some of the effects of climate change except in sites lacking 
thermal refuges.  If not, use of such refuges might depend on evolution of appropriate 
behaviors, and the potential for this is entirely unknown. 
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Disease resistance 
Many parasitic and bacterial diseases infect salmon, and some of these infections 

become more virulent with increasing temperature (McCullough 1999).  Reasons for this 
include lower host resistance when the fish are thermally stressed, and higher pathogen 
population growth rates, due to shorter generation times at higher temperatures 
(Marcogliese 2001).  Diseases of wild salmon likely to become a greater problem with 
warmer temperatures include those caused by the myxosporidian parasite Ceratomyxa 
shasta, the bacterium Flexibacter columnaris, and by various Aeromonas and Listonella 
species (McCullough 1999).  These pathogens are ubiquitous and infection rates can be 
very high (Ordal and Pacha 1963; Chapman 1986; Tiffan et al. 1996).  As the availability 
of cool water decreases, mortality rates will likely increase and selection should favor 
increased resistance to these diseases. 

Salmon populations that have been exposed to particular diseases historically tend 
to have higher resistance to those diseases (Zinn et al. 1977; Bower et al. 1995; 
Bartholomew 1998; Miller and Vincent 2008).  The Columbia River has already 
undergone changes (increased temperature, lower flows, slower juvenile migration) that 
probably have increased exposure and susceptibility to certain diseases.  Ordal and Pacha 
(1963) identified high columnaris infection rates as a potential cause for the decline of 
Columbia River Chinook, sockeye and steelhead trout in the early 1960s.  Although 
experiments are complicated by enormous variability in strain virulence, it would be 
informative to see if resistance has increased compared with their findings, and those of  
Zinn et al. (1977). 

The rate at which resistance responds to changes in pathogen prevalence or 
virulence will depend in part on its heritability.  Heritabilities for resistance to common 
diseases range from very low to moderate, but tend to be lower in populations that have 
historically been exposed to the disease (0 to 0.34, Beacham and Evelyn 1992; 0.13 Hard 
et al. 2006).  Low heritabilities will limit the pace of future adaptation in populations that 
already show some resistance, such as our focal populations.   

Upstream migration  
Snake River spring/summer Chinook salmon spawn in the Salmon River basin in 

central Idaho, at the highest elevations of any salmon population (up to 2000 m above sea 
level, Fig. 1).  They also complete some of the longest migrations: up to 1500 km from 
the ocean to their spawning sites.  Columbia River sockeye salmon migrate up to 1000 
km to spawning grounds in the Wenatchee and Osoyoos lakes.  Successful spawning in 
such populations requires that they (1) stay in the ocean long enough to acquire adequate 
energy stores, (2) use energy efficiently during migration, (3) avoid migration when 
conditions are especially difficult (e.g., high temperatures, very low flow), and 4) arrive 
prior to the appropriate spawning date.  Climate change will likely alter the optimal 
balance between these demands owing to changes in temperature and flow that influence 
mortality and energy costs (Hinch and Rand 1998; Rand et al. 2006; Young et al. 2006).  

Most fish in our focal populations migrate up the Columbia River in April and 
May, prior to peak temperatures, and then hold in deep, cool pools before moving to 
spawning grounds. Snake River Chinook salmon spawn in mid- to late-August (Good et 
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al. 2005), and Columbia River sockeye salmon spawn in October (Hyatt et al. 2003).  
Migration prior to peak temperatures is presumably necessary in order to complete their 
long migration prior to the appropriate time for spawning.  Late migrants have high 
mortality during the migration (Naughton et al. 2005) or experience delays while they 
seek thermal refugia (High et al. 2006; Salinger and Anderson 2006), probably owing to 
the warmer water in July and August.  Mean July water temperature in the Columbia 
River has risen steadily from 16.9˚C in 1950 to 20.9˚C in 2006 (measured at Bonneville 
Dam, Fig. 3, DART 2007).  Not only are peak temperatures warmer, but high 
temperatures last longer; compared to the late 1930s, stressful temperatures now begin a 
full month earlier and persist 2-3 weeks later (Quinn and Adams 1996).  In short, recent 
selection against migration during stressful summer temperatures has likely favored 
earlier migration in spring.  
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Consistent with this prediction, a trend toward increasingly earlier migration over 
the past century in spring/summer Chinook and sockeye (O. nerka) salmon is evident 
(Fig. 3, and Quinn and Adams 1996).  However, the extent to which these responses are 
plastic or genetic is unclear, and might be confounded with changing abundance of 
populations that differ in timing, or by changes in hatchery production or harvest.  Sea 
surface temperatures can influence migration timing via plasticity, but this effect tends to 
be weak (Hodgson and Quinn 2002; Hodgson et al. 2006).  Furthermore, the high 
heritability of timing-related traits (median 0.51 Carlson and Seamons 2008) supports the 
plausibility of evolutionary adaptation due to strong selection resulting from changing 
conditions.  

Compared with spring Chinook salmon, Columbia River basin sockeye are more 
suitable for exploring the probable strength of the selection differential caused by rising 
temperatures because their simpler population structure and minimum of hatchery 
propagation simplify analysis of time trends (Quinn and Adams 1996; Hodgson et al. 
2006).  Here, earlier migration appears to have evolved owing to warming water 
conditions in the Columbia River (Quinn and Adams 1996).  Recent analyses (L. Crozier, 
unpubl. data) support this conclusion by quantifying thermal selection for earlier 
migration over the past 50 years.  Specifically, sockeye salmon that survive migration are 
expected to pass Bonneville Dam on average 2.5 days earlier per generation (0.3 standard 
deviations) than the population average, based on a probabilistic model of temperature-
induced mortality, and historical records of migration time and temperature.  With this 
selection differential, the observed shift in migration timing of 8.6 days (Fig. 3) could be 
accomplished with a migration timing heritability of only 0.24.  This value is certainly 
plausible (cf 1.06 Quinn et al. 2000), indicating that evolutionary change could easily 
account for the observed trend in migration timing.  Even so, the future evolution of 
migration time will eventually be constrained by eroding genetic variation and conflicting 
demands.  For example, if salmon migrate earlier in the summer but spawn at the same 
date in fall (or even later), they will need more energy to sustain themselves for the 
longer period of fasting.  This need for more stored energy might be in conflict with the 
need to leave the ocean earlier in the summer, missing some of the best growing 
conditions. 
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Spawning date, emergence timing, and development rates 325 
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Snake River spring Chinook salmon spawn in the late summer; embryos develop 
over winter and emerge from the gravel as fry in early spring.  In general, emergence 
timing appears to be under stabilizing selection, because fry have low survival if they 
emerge too early, before food is seasonally available, or too late to capitalize on crucial 
growth opportunities (Brannon 1987; Einum and Fleming 2000; Letcher et al. 2004).  
Embryo development rates are tightly linked to water temperature (Beacham and Murray 
1990), so optimal emergence timing must match local conditions through adjustments to 
spawning date or genetically-based, temperature-specific embryo development rates 
(Brannon 1987; Brannon et al. 2004).  Indeed, even small differences in water 
temperature among nearby spawning locations can influence spawning date (Beer and 
Anderson 2001).  On the other hand, spawning date can sometimes vary for reasons other 
than selection on emergence timing, such as habitat inaccessibility at a particular time or 
energetic demands on adults, and in such cases temperature-specific development rates 
might evolve (Tallman 1986; Tallman and Healey 1991).   

Warmer winters will accelerate development and lead to earlier emergence.  The 
optimal time for emergence will also advance, because seasonal initiation of primary and 
secondary productivity in general is temperature-sensitive.  However, fry emergence and 
optimal food conditions might not advance at the same rate.  If emergence timing 
diverges from optimal conditions, then selection should favor compensatory changes in 
spawning date or temperature-specific development rates.  Spawning date is particularly 
likely to evolve owing to its high heritability in salmonids (Quinn et al. 2000; Hard 2004; 
Hendry and Day 2005; Carlson and Seamons 2008).  In fact, spawning date has evolved 
quickly in populations transplanted to new environments.  Chinook salmon populations 
transplanted to New Zealand, for example, have diverged several weeks in maturation 
date, which is closely related to spawn time, in the 80 years since their introduction 
(Quinn et al. 2000; Unwin et al. 2000; Quinn et al. 2001).  Moreover, this evolutionary 
divergence matches expectations: later spawning occurs in the populations where 
embryos develop in warmer water.  Spawning date in Columbia River salmon thus might 
evolve rapidly in response to climate change, unless artificial propagation of the 
population exerts countervailing selection (Quinn et al. 2002). 

It is less certain whether temperature-specific development rates will evolve with 
climate warming.  Although development rates do seem adapted in some situations to 
match emergence timing to favorable conditions, the most dramatic variation is among 
groups that spawn at different times in the same site (Tallman 1986; Brannon 1987; 
Tallman and Healey 1991; Hendry et al. 1998). Moreover, the heritability of embryo 
development rate seems much lower (Hebert et al. 1998; Kinnison et al. 1998) than that 
for spawning date, suggesting that evolution of development rates will be relatively slow. 
Consistent with this expectation, the divergence in spawning date among New Zealand 
Chinook salmon populations was not accompanied by divergence in temperature-specific 
development rates (Kinnison et al. 1998; Unwin et al. 2000).  However, if changes in 
spawning date do not lead to optimal emergence timing, changing development rates 
would be the only evolutionarily mechanism to adjust emergence timing.  
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Juvenile rearing 368 
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After the fry in our focal populations emerge from the gravel, they spend a year in 
the stream (in the case of the Chinook salmon) or lake (sockeye) before migrating to the 
ocean.  For sockeye salmon, growth in some streams is higher under warmer conditions 
(Schindler et al. 2005), although complex phenological changes may not always benefit 
sockeye fry (Hampton et al. 2006). For Chinook salmon, survival during this period is 
lower under warmer and lower-flow conditions (Crozier and Zabel 2006), which could 
increase the risk of extinction by 29-86% (Crozier et al. 2008). Potential evolutionary 
responses will depend on the mechanisms by which low fall flows and high summer 
temperatures reduce survival.  Likely candidates include influences on growth rates and 
predation. Little is known about the evolutionary responses of juvenile salmon to changes 
in predation, so we here focus on growth. 

Local adaptation of growth rate to water temperature does occur in at least some 
salmonines (Jensen et al. 2000; Finstad et al. 2004), notably after introduction to new 
environments (Haugen and Vollestad 2000; Quinn et al. 2001). Moreover, the 
contributions of body size and growth rate to survival in salmonids do appear to vary 
with environmental conditions (Zabel and Williams 2002; Zabel and Achord 2004). 
Although these patterns suggest growth rates can evolve in response to changing 
temperatures, there are several reasons for caution.  First, the heritability of growth rate 
can be relatively low (0.04-0.3) in wild Chinook salmon (Hard 2004; de Leaniz et al. 
2007; Carlson and Seamons 2008; Waples et al. 2008).  Second, evolutionary responses 
are difficult to predict because growth rates are genetically correlated with many other 
traits under selection, such as egg size, agonistic behavior, age and size of smolting, and 
age and size at maturity (Hard 2004).  Third, adaptation of growth rates to local 
temperatures appears strongest at low, rather than high, temperatures (Jensen et al. 2000).  
Finally, studies formally estimating natural selection in salmonid populations 
experiencing environmental change have not found strong selection on growth rate or 
body size (Hendry et al. 2003; Carlson et al. 2004). We tentatively conclude that climate-
induced changes in growth rate are likely to be primarily plastic. 

 

Downstream migration and early ocean stages 
The periods of downstream migration and ocean entry are especially hazardous 

for salmon.  Although many traits can influence survival during these periods, we focus 
on migration timing, which has been well studied and shows the potential for both plastic 
and genetic responses to climate change.  The optimal timing of downstream migration, 
like that of upstream migration, reflects a trade-off between the time for growth before 
migration and the hazards of seasonally deteriorating river or ocean conditions.  Smolt 
migration timing varies among populations (Peven 1987; Healey 1991; Orciari and 
Leonard 1996; Achord et al. 2001), but the relative contribution of genetic differences 
versus phenotypic plasticity to these patterns remains uncertain.   

For our focal Chinook populations, survival during downstream migration is 
negatively correlated with temperatures over 13˚C and positively correlated with flow 
(Achord et al. 2007). An earlier snowmelt and rising summer temperatures will cause 
unfavorable river conditions to occur earlier in summer, thus potentially favoring earlier 
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migration. At present, salmon seem to be responding plastically by migrating earlier in 
years with warmer fall and spring temperatures (Achord et al. 2007), consistent with 
patterns seen in these species elsewhere (Quinn 2005).  Phenotypic plasticity might thus 
accommodate climate change.  However, with climate change, changes in conditions at 
the rearing location might not exactly parallel changes in conditions in the lower river, 
estuary, and coastal environments.  That is, earlier migration might well be adaptive with 
respect to survival in the upper river but not with respect to survival in the lower river or 
ocean.  In such cases, the plastic response might not be adaptive and selection might 
favor a genetically-based response.  No studies have yet documented genetically-based 
changes in smolt migration timing, but the trait appears to have a genetic basis (Stewart et 
al. 2006, and references therein).   
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Factors influencing the optimal timing of ocean entry are more difficult to predict 
but clearly important.  Survival over the entire period of ocean residency is usually <4% 
for Snake River Chinook salmon (Williams et al. 2005), and most mortality is thought to 
occur within weeks to months of ocean entry (Pearcy 1992).  Survival probabilities 
during this period are related to ocean conditions when the juveniles arrive (Logerwell et 
al. 2003; Scheuerell and Williams 2005; Zabel et al. 2006). Salmon grow quickly when 
upwelling winds bring cool, nutrient-rich, water to the surface, stimulating the growth of 
plankton. Cooler water also reduces predation by displacing warm-water predators 
offshore.  Some models predict that climate change will increase the intensity of 
upwelling but delay its onset (Snyder et al. 2003; Diffenbaugh et al. 2004).  At present, 
naturally migrating smolts with earlier ocean entry usually have higher ocean survival, 
possibly reflecting maladaptation introduced by the effects of dams on migration speed 
(Zabel and Williams 2002; Waples et al. 2008).  A delay in upwelling might improve 
survival of late-entry smolts, ultimately selecting for later ocean entry.  Later initiation of 
smolt migration or slower migration through the river would likely increase in-river 
mortality, thus setting the stage for climate change to impose contradictory selection on 
migration timing through in-river survival (favors earlier migration) and early-ocean 
survival (favors later migration). Other climate models predict that upwelling will instead 
shift earlier in the season (Hsieh and Boer 1992), in which case the two aspects of 
selection are instead complementary.  

In this discussion we have assumed that river conditions affect migration survival, 
and that arrival time in the estuary depends directly on migration date.  At present the 
vast majority of smolts (>80%) are, however, collected at up-stream dams and taken 
downriver in barges.  These fish can reach the estuary in 2 days instead of 2-6 weeks.  
Although earlier ocean-entry in general appears advantageous for this population, barged 
fish typically have lower adult return rates than naturally migrating fish (Williams et al. 
2005).  The reasons for this difference are controversial (Budy et al. 2002; Muir et al. 
2006). But regardless of the reasons, human actions have such a major impact on the 
selection pressures these fish experience, it is misleading to consider potential 
evolutionary responses to climate change without considering our role (Waples et al. 
2008).   

Ocean residence 
Most Columbia River salmon spend 1 to 4 years in the ocean, depending on 

environmental and genetic factors, so ocean conditions undoubtedly also impose 
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selection.  Ocean growth rates will likely respond to climate change through alterations in 
metabolic costs of foraging in a warmer ocean and shifts in prey abundance, composition, 
and distribution.  We do not know enough either about how ocean food webs will 
respond to climate change or how Chinook or sockeye salmon will respond to these 
changes to predict specific evolutionary consequences.  Genetic variability in the 
migration patterns of salmon (Pascual and Quinn 1994; Kallio-Nyberg et al. 2000) 
represents potential for adaptation of migration routes toward regions favorable for 
growth and survival.  However, these processes are so poorly understood that it is 
difficult to speculate how rapidly adaptation might occur, and how it would interact with 
proximate responses to currents, temperature, food availability and other stimuli. 
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Integrating across the complexity 
In outlining the above suite of traits and life stages, we have attempted to assess 

how climate change might alter natural selection and drive evolutionary responses in a 
particular set of salmon populations (Table 1).  We have highlighted interesting aspects 
of specific traits but have not considered interactions among them in detail.  We now 
begin to address this complexity by proposing a conceptual model that integrates climate, 
plastic, and evolutionary effects across a particular life-history type, yearling juvenile and 
spring/summer adult migrating salmon.  We focus on the timing of life-history events 
because phenology is likely to respond to climate change both evolutionarily and through 
plasticity (Bradshaw and Holzapfel 2008), and because changes in phenology at one life 
stage can directly affect phenology at other stages.  We consider the timing of four major 
life-history events: upriver migration, spawning, emergence from the gravel, and smolt 
migration.  Note that we do not expect the following analysis to be correct in all respects, 
or to apply to all populations.  Rather, we outline possibilities and a framework as a basis 
for an integrated discussion.  

We start by assuming (Fig. 4, top panel) that in a population, the peak of the 
phenotype distribution of timing (solid) for each life-history event coincides with the 
peak of the fitness function for that event (height of the dotted curve indicates the 
expected fitness of an individual with that timing phenotype).  We therefore assume that 
salmon populations are locally adapted before climate change, such that the mean timing 
of each event approximates the optimal timing. It is certainly possible that the current 
populations are not adapted for the current conditions, given that the Columbia River has 
changed so dramatically and hatchery propagation and fisheries can exert countervailing 
selection. But attempting to integrate this possibility would mainly serve to complicate 
our illustration, and is better left for a subsequent analysis. 

 The second panel of Figure 4 represents how fitness functions might shift in 
position under one potential climate-change scenario.  First, an earlier onset of stressful 
temperatures will select for earlier adult upstream migration (note, however, that 
populations tending to migrate after peak temperatures would be predicted to 
progressively migrate later under warming conditions).  Second, optimal spawning date 
will shift later in the year because warmer water will otherwise hasten egg development 
and cause the fry to emerge too early.  Earlier adult migration but later spawning implies 
a longer stay in freshwater, which imposes energetic costs and higher risk of predation 
and thermal stress.  For later spawning to be favored, the costs imposed on juvenile 
survival from early emergence must outweigh the costs imposed on adult survival and 
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egg size.  The actual shift in optimal spawning date will depend on the degree to which 
warmer water accelerates development more than it advances optimal emergence time, 
and the possibility of plastic response in spawning date, that might be greater in this 
population than generally reported in the literature (Dan Isaac, pers. comm.).  Third, 
optimal emergence timing should be earlier because warmer water should advance the 
date at which food becomes available.  Fourth, excessively high river temperatures during 
the summer will select for earlier migration of smolts, unless fifth, delayed upwelling 
along the coast favors postponement. This combination illustrates a potential conflict 
between selection on life stages in different habitats: warm river temperatures will select 
for earlier migration, but ocean conditions might favor later migration.  
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The third panel shows the expected plastic response of each life-history event to 
climate change.  We first expect migration and spawning date to remain largely 
unchanged owing to their low plasticity.  We next expect earlier emergence timing 
because warmer incubation temperatures accelerate development (again note that the 
actual shift depends on any change in spawning date).  Similarly, we expect earlier 
downstream migration timing because on an annual basis, smolting is advanced by earlier 
warming.  Ocean entry is likely to advance because migration speeds typically accelerate 
in warmer water. 

The fourth panel shows potential natural selection on the timing of each life-
history event as a result of the mismatch between the new optimum and the phenotype 
distribution.  First, we expect selection for earlier migration and later spawning because 
the optima shift with climate change, but the traits do not shift plastically.  We next 
expect little selection on emergence or downstream migration timing because, although 
the optimum has advanced, the plastic response is in that direction.  Finally, selection on 
ocean entry timing might be strong because the plastic shift in migration timing acted in 
the opposite direction from the optimal.   

This heuristic analysis illustrates the need for a closer examination of several key 
traits and stages. For example, selection on spawning date depends on at least three 
changes that are uncertain: (1) the advance in optimal emergence timing, (2) a plastic 
change in spawning date owing to warmer waters, and (3) potential costs of longer delays 
between migration and spawning.  With regard to this last effect, advancing upstream 
migration dates and higher summer temperatures increase the length of time in freshwater 
during which energy stores are depleted, and cool-water refugia might contract, 
increasing pre-spawning mortality. This means that selection might not favor a delay in 
spawning date, which could then impose selection on embryo development rates for a 
given temperature.  The lower heritabilities of embryo development rates would likely 
limit selection response.  As another example, consistent delays in the onset of upwelling 
would select very strongly to delay the time of ocean entry.  Accordingly, selection might 
favor delayed onset of smolt migration or a slower migration, and yet both of these 
effects seem unlikely given that high summer temperatures during migration increase 
mortality rates. Under these conditions, selection might favor direct adaptations to resist 
the stresses associated with high temperatures or early ocean entry. Note that changes in 
upwelling timing are very uncertain, so this is not the only plausible scenario.  
Nonetheless, it does draw attention to a particular case where the plastic response in one 
stage may be unfavorable for the subsequent life stage. 
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Considerable uncertainty attends the prediction of evolutionary responses to 
climate warming (Holt 1990), even for a short-lived organism with a simple life cycle 
that is amenable to experiment (Etterson and Shaw 2001). The uncertainties are 
considerably greater for organisms like salmon that have complex, migratory life cycles. 
Selection pressures might differ greatly in different life stages, and appropriate 
phenological cues are critical for successful transitions between habitats.  For salmon, 
like most organisms, both plastic and evolutionary mechanisms will contribute to 
phenological changes.  Moreover, the persistence of individual salmon populations 
through climate change will likely depend on evolution of a variety of other, non-
phenological traits as well.  

We identified several traits with relatively high heritabilities, such as upstream 
migration date and spawning date, where we expect climate change to induce strong 
selection. Evolutionary responses in these traits are likely, as has been shown for other 
cases of environmental change influencing salmon (Hendry et al. 1998; Kinnison et al. 
1998; Hendry et al. 2000; Quinn et al. 2000; Quinn et al. 2001; Kinnison et al. 2008) and 
for other organisms (reviews: Hendry and Kinnison 1999; Reznick and Ghalambor 2001).  
We identified other traits, such as emergence timing, smolt migration timing, and habitat 
choice, where phenotypic change might largely reflect plasticity.  These plastic responses 
might often be adaptive and should greatly reduce mortality compared with selection 
acting on the same traits (Price et al. 2003; Ghalambor et al. 2007). However, more work 
is needed to assess how plasticity and evolutionary changes feed back to affect the 
productivity and persistence of populations (Kinnison and Hairston Jr 2007; Kinnison et 
al. 2008).  

Phenological changes are likely to be particularly important (see also Bradshaw 
and Holzapfel 2008). Indeed, some of the best evidence for phenotypic responses to 
environmental change are in the timing of migration or reproduction for salmon (Fig. 3; 
Quinn and Adams 1996) and for other organisms (Parmesan and Yohe 2003; Reale et al. 
2003b; Parmesan 2006).  Most of this evidence is currently observational, so it remains 
difficult to assess the relative contributions of genetic change versus plasticity (Gienapp 
et al. 2008).  We argue that these contributions are likely to differ among various timing 
events, as has been observed for some birds (Both and Visser 2005). In salmon, changes 
in juvenile migration timing are likely to be mostly plastic, whereas changes in adult 
migration timing are likely to be mostly genetic.  The norm of reaction that governs 
juvenile migration time might evolve over time, especially in response to changes in 
climate variability, but we do not yet have enough information to predict this process. 

Although strong phenological responses to climate change are likely, they are not 
without constraint and might not obviate selection on other traits. For example, the life-
history of salmon balances the timing of numerous events during transit from headwaters 
to the ocean and back again.  Change in one aspect of timing might thus directly affect 
subsequent life-history stages, perhaps in maladaptive ways.  If so, phenological changes 
might not sufficiently balance environmental changes, and selection might occur on other 
traits, such as disease resistance, metabolic responses to temperature, and the sensitivity 
of developmental processes to temperature.  These traits often show less heritability, so 
evolutionary change will be slower.  In general, changes in one trait, which might be 



Evolutionary responses to climate change in salmon    page 15  

plastic or genetic, will influence selection and evolutionary responses for other traits 
(Both and Visser 2001; Price et al. 2003; Ghalambor et al. 2007).  

593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 
623 
624 
625 
626 
627 
628 
629 
630 
631 
632 
633 
634 
635 
636 
637 
638 

An important point to keep in mind is that in situ evolutionary change, while 
potentially saving distinctive populations from extirpation, might alter them so that they 
are no longer so distinctive. For example, Williams et al. (2008) argue that threatened 
Snake River fall Chinook salmon might be adapting to anthropogenic changes to their 
habitat by shifting from migration as sub-yearlings to migration as yearlings, thus 
gradually eliminating one of the dominant characteristics of the historical population.  
Ultimately, climate change might favor a change in the juvenile and adult migration 
phenology of Snake River spring/summer Chinook to the point that they no longer 
exhibit the northern ecotype of Chinook (Taylor 1990; Healey 1991; Brannon et al. 
2004).  Currently, fall Chinook salmon (with the typically southern ecotype) spawn in the 
lower Salmon River (StreamNet 2005); with climate change, some aspects of this 
phenotype might become more suitable at higher elevations, eventually encroaching on 
the habitat currently occupied by summer Chinook salmon.  If genetic variation in the 
existing population is low, or immigration high, trait replacement might occur through 
gene flow rather than evolution in isolation, reducing the genetic distinctiveness of this 
population complex (Waples et al. 2004).  Indeed, replacement by gene flow appears to 
have occurred in some populations of mice experiencing environmental change (Pergams 
and Lacy 2008). Such a scenario is complicated by the different spawning habitat 
preferences and ocean migration patterns of the two phenotypes, which might be tied to 
juvenile or adult migration timing.  The linkages between and constraints on all these 
traits are not fully understood.  Nonetheless, whether through in situ change or gene flow, 
evolutionary change induced by climate change might dramatically alter the structure and 
integrity of the evolutionarily significant units on which conservation designations are 
based. 

How representative is our case study?  The great diversity of salmon life histories 
precludes extending the details of our analysis too broadly.  For example, some 
populations have a short freshwater residency but a long estuarine residency, which 
should shift the stage and environment where climate change is most likely to alter 
selection pressures.  Furthermore, particular climate impacts not considered here will also 
have a profound impact on the evolution and long-term survival of Pacific salmon 
populations.  For instance, winter flooding strongly influences egg survival (Schuett-
Hames et al. 2000; Seiler et al. 2002; Seiler et al. 2003), and is likely to increase 
extinction risk for some populations under climate change (Battin et al. 2007; ISAB 
2007).  Sea level rise, ocean acidification, changes in stream productivity, increased 
habitat availability at the northern end of the range, and myriad other anticipated and 
unanticipated effects of climate change will further complicate the evolutionary puzzle 
confronting salmon.   

Regardless of the specific selective factors that will most affect a particular 
population, salmon in general will respond to climate change with a dynamic tension 
between phenological and non-phenological change, as well as interacting plastic and 
genetic shifts in phenotypes. These are the fundamental processes that require focused 
study in near future. Integrated analyses have been useful in the study of squirrels (Reale 
et al. 2003a; Reale et al. 2003b) and migratory birds (Both and Visser 2001; Both and 
Visser 2005; Nussey et al. 2005; Both and Marvelde 2007), and are likely to prove 
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equally fruitful for salmon.  Studies in wild salmon, in particular, are clearly needed, 
because most of the available genetic research has been conducted on hatchery fish 
(Carlson and Seamons 2008).  Finally, because of the multiplicative impact of selection 
over the life cycle, it is crucial to consider the entire life cycle for species whose viability 
is at stake.  A better understanding of the range of possible evolutionary responses to 
climate change is an essential component of effective, flexible strategies for the 
conservation of organisms with complex life histories, like salmon.  
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Table 1.  Overview of some of the possible effects of climate change and potential plastic and evolutionary responses in Snake River spring/summer 
Chinook salmon. References with an * are specific to this population. 

 
 
 
Climate change effect 

C
on

fid
e
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ic
al
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ff

ec
t

high 

nc
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in
  

Potential evolutionary 
response Effect on fish Plastic response Reference 

seek cooler refugia  (Bisson and Davis 1976; McCullough 
1999; Crozier and Zabel 2006*) 

↓ parr survival ↑ peak summer and fall 
temperatures 

(Brett et al. 1982; ISAB 2007)   ↑ energetic efficiency 
at high temperatures 

↑ or ↓ growth,  
depending on food supply and fish 
density 

 predator avoidance 
behavior,  choosing 
suboptimal habitat 

 (Petersen and Kitchell 2001*; Marine 
and Cech 2004) 

↑ predation on juveniles 

migration delays,  
higher stray rate 

earlier adult migration  (McCullough 1999; Hyatt et al. 2003; 
Naughton et al. 2005; Goniea et al. 
2006; Battin et al. 2007) 

↓ adult survival 
due to stress from temperature or 
disease 

↑ disease resistance 
↑ energetic efficiency 
at high temperatures 

 shift reproductive 
allocation 

(McCullough 1999; Kinnison et al. 
2001; Rand et al. 2006) 

 ↓ reproductive success 
(↓ egg viability from  
thermal stress, or 
smaller eggs due to  
↑ energetic cost) 

high change habitat  (Crozier and Zabel 2006*) ↓ summer and fall flows ↓ parr survival 

(Beacham and Murray 1989; Finstad 
et al. 2004) 

shorter and milder winter high earlier emergence ↑ development rates ↑ energetic efficiency 
at higher temperatures 

high earlier smolt migration  (Beckman et al. 1998; Achord et al. 
2007*) 

↑ spring temperatures ↑ development rates 

  (Smith et al. 2003 * found no effect; 
Zabel et al. in press* negative effect) 

↓ smolt survival ↑ disease resistance 
earlier smolt migration 
↑ heat tolerance 

earlier spring freshet high  earlier smolt migration  (Achord et al. 2007*) 
weaker spring freshet high   (Williams et al. 2005*; Achord et al. 

2007*) 
↓ smolt survival 
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 ↓ adult energetic cost   
(if not too hot) 

larger eggs  (Kinnison et al. 2001; Rand et al. 
2006) 

delay in upwelling low ↑ juvenile survival  
if arrival time does not change 

  (Logerwell et al. 2003; Scheuerell and 
Williams 2005*; Williams et al. 
2005*; Zabel et al. 2006*; Waples et 
al. 2008*) 

↑ ocean stratification,  
↑ surface temperature 

high ↑ metabolic costs in surface water ↑ vertical migration 
shift locations 

↓ metabolic rates, 
change migration route 

(Welch et al. 1998; Walker et al. 
2000; Portner and Knust 2007) 

acidification high ↓ growth rate delayed maturation   
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Legend

Figure 1.  The freshwater range of Snake River spring/summer Chinook and Columbia 
River sockeye salmon. These Chinook salmon rear in the Salmon River Basin, and 
sockeye salmon rear in Osoyoos Lake and Lake Wenatchee.  The major dams along the 
migration route are shown with an *. Bonneville (Bonn.) and Lower Granite (L.G.) dams 
are mentioned in the text.

Figure 2. Life cycles for seven genera of Pacific salmonids, illustrating the variety and 
complexity of anadromous life cycles in salmon, from Xanthippe Augerot, 2005.  Atlas of 
Pacific Salmon:The First Map-Based Status Assessment of Salmon in the North Pacific. 
Univ. California Press.

Figure 3.  A. Average daily Chinook salmon counts and temperatures at Lower Granite 
Dam from 1995 to 2006. The boxed area shows the average time period the river is over 
20oC, reducing the migration of adults, as shown by the lower Chinook counts during this 
time period. B. Mean July temperature at Bonneville Dam, with 1960-1979 temperatures 
inferred from measurements at McNary Dam. Median migration date of C. spring 
Chinook and D. sockeye salmon. Regression statistics and lines are shown. All data 
from DART 2007.

Figure 4.  Hypothetical interaction between shifts in life cycle timing and shifts in 
environmental optima.  The X-axis represents time from spawning through ocean entry. 
Dashed vertical lines show the current phenotype.  The line shifts for emergence, 
downstream migration, and ocean entry timing represent plastic changes in phenology. 
The upper graph represents an equilibrium condition with the response of the fish 
adapted to environmental conditions.  The second row shows a hypothetical climate-
change scenario with optimal migration timing shifted earlier, spawn timing shifted later, 
emergence and downstream migration timing shifted earlier, and ocean entry shifted 
later.  The third row shows the likely physiological (plastic) response to warmer 
temperatures in relation to the climate-shifted optima, and the potential mismatch 
between optimal and realized phenology.  The bottom row shows the potential 
evolutionary response to the mismatches depicted in the third row.  Note that earlier 
downstream migration but later ocean entry would seem to present contradictory 
pressures.
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